Architectural Engineering: Structural Option Thesis Presentation

Best Buy Main Corporate Campus: Building D Richfield, MN

Jonathan E. Aberts

Spring 2009

Presentation Outline

- Introduction
 - Building description
 - Existing structural conditions
- Project Proposal
- Building Redesign
 - Columns
 - PT floor system
 - Lateral system
 - Foundation
 - Cost Comparison
 - Architectural Comparison
 - Conclusions

Introduction

- Building Name: Best Buy Main Corporate Building
- Location: Richfield, MN
- Function: Office building
- Occupants: Best Buy corporate employees
- Architects: Perkins & Will (www.perkinswill.com)
 - Minneapolis, MN
- Engineers: Opus Northwest (<u>www.opuscorp.com</u>)
 - Minnetonka, MN
- **CM:** Opus Northwest
 - Chris Johnson

Introduction

Building Description

Architecture

- Precast curtain wall
- Ribbon windows
- Curtain wall consists of 6" architectural precast panels tied into the steel structure
- Prefinished aluminum closure panel holds the ribbon of windows on each floor

Structural System

Floor System

- Composite beam framing system
- 6¹/₄" slab, 3" 20 gauge deck and 3¹/₄" lightweight concrete
- Spray on fireproofing

W18x40 (2)	W16x26 (¾)	-H
W18x40 (2¾)	W16x26 (1¼)	W18x40 (2¾)
∞ 3 5 W18x40 (2¾)	[№] 2 1 ×5 ⁰ ₩16x26 (11⁄4)	¹ 21 ×55 ○ ₩18×40 (2¾)
(1%)	(11/4)	(11/4)
W18x40 (2)	W16x26 (¾)	W18x40 (2)

Structural System

92 85					STEEL	COLUMN S	CHEDULE						
ĥ	IARK NG.	C1	CZ	C3	C4	C5	C6	C7	CB	C9	C10	C11	C12
FEN 10E:	Thouse = varies		1		5				ec.				
POO 10E-	F - VARIES				645	51 47	ę				XXX	W9>29	
Eth 15E,	FLOGF = 154"-4"	W1 4>43	W12x40	W14+43	() () ()	¥1	(H) W14	14×43	12:40	12:40	30477	ŧ	
5rh 158.	FLGC# = 159'8"	ţ.	li				57.07 						-
4th 15E,	FLOOF - 155"-0"	V14>69	M265	TYP.	B) (14)103	91 92 94	1 4 1 (F)	E13v41	V12:63	M2653	202400		
.3rd 155.	FLUDF = 140'-4"	L I		(1)				l III					
2od 1:56.	FL000# - 125'-8"	W14250	- -	02120	5145	0 142	8	0644	71 206	- ne. w12:35	00		600
list TSE:	FLGGR = 111'-0"	5EE	ARCH. SIM: S'& P.C. VER C	SIM: FøP.C. ØVER	nw.		2.0 ≩ 	÷.	5EE	ARCH.	SIM: S™ ₹ ©® P.C. ØVER		×
LOW TSE-	ER LEVEL	R	R.	Ē	Ŕ	N1 45 1.78/	W1 4v1 45	W14v12C	W12x152	R	Ę		Ŕ
ATE	SIZE	2">20">1'-8"	2">18">1"-6" © SIM: 2%">28">2"-+"	3発*>34*>2*-16 ● SIM: 3強*>27*>3*-1*	5%[×28[×2]-10]	₹ 3%7×307×27-67	₹ 2*>20*>1'-8*	€ 2">20">1'-8"	म् 2"×16"×1"−6"	2">16">1"-0" © SIM: 2%">28">2"-+"	2½*>21*>1'-2*	1"×3%**1"-2"	11/272167217-27
	A GOLTS	+-¥"ø	4¾*0	12-234*0	12-2%	10-234*4	4-74"4	4- 3 4"a	4- 3 4"4	+-¥"⊄	4- 2°¢	4-34°0 A325	6-1½*d
SWB	DETAIL	7/\$6.01	7/56.01 7/58.01 & SM.	17,18/55.02 19,20/S5.02	19/55.02	8/55.02	7/SE.01	7/SE.01	7/SE.01	7/56.01 7/56.01 & SIM.	13/56.01	13/58.01	7/\$8.02
REM	ARKS			W BASE R USE 19- SU 191	SO FOR	boi BASE K USE fy∽ 50 kaji				bừ SIM, & CRID T-17 USE 2<18×1'-6" 645E R	4 SIM: Column 15 Vertical		

Structural System

Lateral System

- Braced frame consist of 3 W14 columns spliced together at the 3rd and 5th floors
- Heavier beams, W16x57

Project Proposal

Proposed Solution:

- Redesign Best Buy Corporate Building D as a full concrete system
- Floor system will be redesigned post-tensioned slab with beams
- Columns will also be redesigned into concrete
- Lateral bracing system will be shear walls
- Goal is to allow for a larger bay size in the short direction of the building
- Cost Comparison of structural system
- The impact of the change in architecture on the tenant and rentable area

Project Proposal

Solution Method:

- Utilize ACI 318-05 Building Code Requirements for Structural Concrete
- Utilize ADAPT-PT to design beams and slab
- Utilize PCA Column and ETABS to design columns and shear walls
- Utilize RS Means Building Construction Cost Data for a structural cost analysis
- Compare and contrast new vs. old architecture

Building Redesign

- Columns
- PT floor system
- PT beams
- Shear Walls
- Foundation

Columns

- Design floor layout to support larger bays with fewer columns
- PCA Columns aided in design of reinforcement
- ETABS used to verify column sizing

Page 14

Columns

....

(II)

Page 15

Columns

- 30"x30" columns requiring 32-#11 vertical reinforcing
- 24"x24" columns requiring 28-#11 vertical reinforcing

30 x 30 in

- Design post-tensioned slab using ADAPT-PT as an aid
- Keep slab thickness close to 8" as recommended by span/depth ratio

- Unit strip method
- Determined a 9.5" slab was required
- 2 tendons required for first and last 2 spans
- 1 tendon for the remaining spans

Page 20

	Number of strands	PT Force per unit	PT Force	P/A	%DL balanced	Left	Center	Right	Total strands	Total PT force per unit width	Total PT force	Left	Center	Right	Total P/A	Total %DL	
1	2	30.0	30.0	263	43	4.75	1.75	8.50	2	30.0	30.0	19	27	27	263	43	
2	2	30.0	30.0	263	69	8.50	1.00	8.50	2	30.0	30.0	30	17	17	263	69	1
3	1	25.0	25.0	219	57	8.50	1.00	8.50	1	25.0	25.0	17	17	19	219	57	
4	1	25.0	25.0	219	57	8.50	1.00	8.50	1	25.0	25.0	19	17	18	219	57	
5	1	25.0	25.0	219	57	8.50	1.00	8.50	1	25.0	25.0	18	17	18	219	57	2
6	1	25.0	25.0	219	57	8.50	1.00	8.50	1	25.0	25.0	18	17	18	219	57	_
7	1	25.0	25.0	219	57	8.50	1.00	8.50	1	25.0	25.0	18	17	18	219	57	-
8	1	25.0	25.0	219	57	8.50	1.00	8.50	1	25.0	25.0	18	17	18	219	57	
9	1	25.0	25.0	219	57	8.50	1.00	8.50	1	25.0	25.0	18	17	18	219	57	-
10	1	25.0	25.0	219	57	8.50	1.00	8.50	1	25.0	25.0	18	17	18	219	57	-

- Design post-tensioned beam using ADAPT-PT as an aid
- Keep beam thickness close to 27" as recommended by span/depth ratio

Page 23

- 2 different beams had to be designed
 - 2 span (57'6",57'6")
 - 3 span (42'6",30',42'6")
- Designed 28" deep for both spans
- 27 tendons needed for 2 span and 19 tendons for 3 span

	Number of strands	PT Force per unit	PT Force	P/A	%DL balanced	Left	Center	Right	Total strands	Total PT force per unit width	Total PT force	Left	Center	Right	Total P/A	Total %DL
1	27	49.8	716.1	180	59	21.30	3.25	25.75	27	49.8	716.1	497	716	547	180	59
2	27	49.8	716.1	180	59	25.75	3.25	21.30	27	49.8	716.1	548	716	497	180	59
	Number of	PT Force	PT Force	P/A	%DL	Left	Center	Right	Total	Total PT force	Total PT	Left	Center	Right	Total P/A	Tota 2DI
	Number of strands	PT Force per unit 47.0	PT Force 499.6	P/A 126	%DL balanced	Left	Center	Right	Total strands 19	Total PT force per unit width 47.0	Total PT force 499.6	Left 497	Center 500	Right 497	Total P/A 126	Tota %DL
1	Number of strands 19 19	PT Force per unit 47.0 66.6	PT Force 499.6 499.6	P/A 126 126	%DL balanced 62 138	Left 21.30 25.75	Center 3.25 3.25	Right 25.75 25.75	Total strands 19 19	Total PT force per unit width 47.0 66.6	Total PT force 439.6 499.6	Left 497 497	Center 500 497	Right 497 497	Total P/A 126 126	Tota %DL 62 138

 Redesign braced frames into shear walls while maintaining current location

4/14/2009

Page 28

G)

Ή)

J

ĸ

 (\mathbf{F})

E

D

4/14/2009

М

- ETABS assisted in the design
- Found that a 12" wall was a sufficient thickness
- Boundary elements were designed to fit inside the 12" wall

Page 31

Foundation

- Considered, however, not redesigned
- Heavier concrete columns and shear walls
 - Larger piers and slabs
 - Stronger concrete

Foundation

Page 33

Cost Analysis

		Beams and Girders		
Size	Quantity	Average Length	Cost per ft	Cost per Floor
W8x15	3	10	\$37.00	\$1,110.00
W12x14	8	10	\$36.00	\$2,880.00
W12x19	5	15	\$36.00	\$2,700.00
W14x22		13	\$47.00	\$1,222.00
W16x26	42	30	\$53.00	\$66,780.00
W16x31	1	30	\$63.50	\$1,905.00
W16x57	4	30	\$98.50	\$11,820.00
W18x35	25	30	\$81.00	\$60,750.00
W18x40	81	42.5	\$72.00	\$247,860.00
W21x44		34	\$87.50	\$2,975.00
W21x50		30	\$98.50	\$79,785.00
W24x55	3	33.2	\$107.00	\$10,657.20
W24x62	1	30	\$121.00	\$3,630.00
		Total Cost per	Floor	\$494,074.20
		Total Building	Cost	\$2,964,445.20

Cost Analysis

Sla	ab	*****	Columns	******		Beams			
Depth	Area	# of	Height	Area	# of	Length	Area		
0.83	46575	51	11.84	6.25	16	115	4.72		
Total	(c.y.)		Total (c.y.)			Total (c.y.)			
143	1.75		139.78			321.66			
			Cast-in-Plac	e Concrete					
Cost p	er c.y.		Cost per c.y		Cost per c.y.				
63	610 1375 120				1200				
Cost pe	er Floor	(Cost per Floo	or	(Cost per Floo	r		
\$873,3	367.50		\$192,194.44	L	\$385,991.11				
			CIP Costs	per Floor					
		*****	\$1,451,	553.06					
			\$8,709	318.33					

Cost Comparisons

 A considerable increase in costs of materials and erection

000000000000000000000000000000000000000	Beam	Columns	Floor System	Total
Steel	\$2,964,445.20	\$909,422.64	\$2,443,540.96	\$6,317,408.80
Concrete	\$2,315,946.67	\$1,153,166.67	\$5,240,205.00	\$8,709,318.33

• 38%

Architecture Comparisons

- Increased open space bays from 42'6" to 57'6"
- No fireproofing
- Fewer columns for partitioned rooms to work around

Architecture Comparisons

Page 38

Architecture Comparisons

Conclusions

- New floor system increased bay sizes without sacrificing ceiling/floor height
 Cost of new system far exceeds cost of
 - existing system

Acknowledgements

Thesis Advisors:

– Dr. Thomas E. Boothby

Industry Contacts:

- Gary R. Strand, P.E. Simpson Gumpertz & Heger
- David B. Smith, P.E. Holbert Apple Associates
- Richard Apple, P.E. Holbert Apple Associates

Other Mentors:

- Professor M. Kevin Parfitt
- Professor Moses Ling

Questions

